Determine ( H β 4 ) to ( β£ 15 β© )
To determine the result of applying ( H β 4 ) to ( β£ 15 β© ) , letβs go through the steps methodically.
Represent ( \ket{15} ) in binary form :
1 5 10 β = 111 1 2 β
So, ( β£ 15 β© = β£ 1111 β© ) .
Apply the Hadamard gate ( H ) :
The Hadamard gate ( H ) acts on a single qubit as follows:
H β£ 0 β© = 2 β 1 β ( β£ 0 β© + β£ 1 β© )
H β£ 1 β© = 2 β 1 β ( β£ 0 β© β β£ 1 β© )
Apply ( H β 4 ) to ( β£ 1111 β© ) :
Applying ( H ) to each qubit in ( β£ 1111 β© ):
H β£ 1 β© = 2 β 1 β ( β£ 0 β© β β£ 1 β© )
So, for four qubits:
H β 4 β£ 1111 β© = H β£ 1 β© β H β£ 1 β© β H β£ 1 β© β H β£ 1 β©
= ( 2 β 1 β ( β£ 0 β© β β£ 1 β© ) ) β ( 2 β 1 β ( β£ 0 β© β β£ 1 β© ) ) β ( 2 β 1 β ( β£ 0 β© β β£ 1 β© ) ) β ( 2 β 1 β ( β£ 0 β© β β£ 1 β© ) )
4. Simplify the expression :
H β 4 β£ 1111 β© = 2 β 1 β ( β£ 0 β© β β£ 1 β© ) β 2 β 1 β ( β£ 0 β© β β£ 1 β© ) β 2 β 1 β ( β£ 0 β© β β£ 1 β© ) β 2 β 1 β ( β£ 0 β© β β£ 1 β© )
= 2 2 1 β ( β£ 0 β© β β£ 1 β© ) β ( β£ 0 β© β β£ 1 β© ) β ( β£ 0 β© β β£ 1 β© β ( β£ 0 β© β β£ 1 β© ) )
= 4 1 β β x 1 β , x 2 β , x 3 β , x 4 β β { 0 , 1 } β ( β 1 ) x 1 β + x 2 β + x 3 β + x 4 β β£ x 1 β x 2 β x 3 β x 4 β β©
Where each x i β can be either 0 or 1.
Thus, the result of applying ( H β 4 ) to ( β£ 15 β© ) is:
H β 4 β£ 1111 β© = 4 1 β β x β { 0 , 1 } 4 β ( β 1 ) x 1 β + x 2 β + x 3 β + x 4 β β£ x β©
This result is a superposition of all possible 4-qubit states with phase factors determined by the parity of the number of 1 s in the binary representation.